sys/external/bsd/acpica/dist/events/evgpeinit.c
author christos <christos@NetBSD.org>
Wed, 04 May 2016 18:15:53 +0000
branchtrunk
changeset 242289 d9e999bfd05d
parent 240046 f07d95be48eb
child 246098 0fb78f09f16c
permissions -rw-r--r--
22 April 2016. Summary of changes for version 20160422: 1) ACPICA kernel-resident subsystem: Fixed a regression in the GAS (generic address structure) arbitrary bit support in AcpiHwRead/AcpiHwWrite. Problem could cause incorrect behavior and incorrect return values. Lv Zheng. ACPICA BZ 1270. ACPI 6.0: Added support for new/renamed resource macros. One new argument was added to each of these macros, and the original name has been deprecated. The AML disassembler will always disassemble to the new names. Support for the new macros was added to iASL, disassembler, resource manager, and the acpihelp utility. ACPICA BZ 1274. I2cSerialBus -> I2cSerialBusV2 SpiSerialBus -> SpiSerialBusV2 UartSerialBus -> UartSerialBusV2 ACPI 6.0: Added support for a new integer field that was appended to the package object returned by the _BIX method. This adds iASL compile-time and AML runtime error checking. ACPICA BZ 1273. ACPI 6.1: Added support for a new PCCT subtable, "HW-Reduced Comm Subspace Type2" (Headers, Disassembler, and data table compiler). Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 137.4K Code, 52.6K Data, 190.0K Total Debug Version: 201.5K Code, 82.2K Data, 283.7K Total Previous Release: Non-Debug Version: 137.1K Code, 51.5K Data, 188.6K Total Debug Version: 201.0K Code, 82.0K Data, 283.0K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented an ASL grammar extension to allow/enable executable "module-level code" to be created and executed under the various operators that create new scopes. This type of AML code is already supported in all known AML interpreters, and the grammar change will appear in the next version of the ACPI specification. Simplifies the conditional runtime creation of named objects under these object types: Device PowerResource Processor Scope ThermalZone iASL: Implemented a new ASL extension, a "For" loop macro to add greater ease-of-use to the ASL language. The syntax is similar to the corresponding C operator, and is implemented with the existing AML While opcode -- thus requiring no changes to existing AML interpreters. For (Initialize, Predicate, Update) {TermList} Grammar: ForTerm := For ( Initializer // Nothing | TermArg => ComputationalData Predicate // Nothing | TermArg => ComputationalData Update // Nothing | TermArg => ComputationalData ) {TermList} iASL: The _HID/_ADR detection and validation has been enhanced to search under conditionals in order to allow these objects to be conditionally created at runtime. iASL: Fixed several issues with the constant folding feature. The improvement allows better detection and resolution of statements that can be folded at compile time. ACPICA BZ 1266. iASL/Disassembler: Fixed a couple issues with the Else{If{}...} conversion to the ASL ElseIf operator where incorrect ASL code could be generated. iASL/Disassembler: Fixed a problem with the ASL+ code disassembly where sometimes an extra (and extraneous) set of parentheses were emitted for some combinations of operators. Although this did not cause any problems with recompilation of the disassembled code, it made the code more difficult to read. David Box. ACPICA BZ 1231. iASL: Changed to ignore the unreferenced detection for predefined names of resource descriptor elements, when the resource descriptor is created/defined within a control method. iASL: Disassembler: Fix a possible fault with externally declared Buffer objects. ---------------------------------------- 18 March 2016. Summary of changes for version 20160318: 1) ACPICA kernel-resident subsystem: Added support for arbitrary bit lengths and bit offsets for registers defined by the Generic Address Structure. Previously, only aligned bit lengths of 8/16/32/64 were supported. This was sufficient for many years, but recently some machines have been seen that require arbitrary bit- level support. ACPICA BZ 1240. Lv Zheng. Fixed an issue where the \_SB._INI method sometimes must be evaluated before any _REG methods are evaluated. Lv Zheng. Implemented several changes related to ACPI table support (Headers/Disassembler/TableCompiler): NFIT: For ACPI 6.1, updated to add some additional new fields and constants. FADT: Updated a warning message and set compliance to ACPI 6.1 (Version 6). DMAR: Added new constants per the 10/2014 DMAR spec. IORT: Added new subtable per the 10/2015 IORT spec. HEST: For ACPI 6.1, added new constants and new subtable. DBG2: Added new constants per the 12/2015 DBG2 spec. FPDT: Fixed several incorrect fields, add the FPDT boot record structure. ACPICA BZ 1249. ERST/EINJ: Updated disassembler with new "Execute Timings" actions. Updated header support for the DMAR table to match the current version of the related spec. Added extensions to the ASL Concatenate operator to allow any ACPI object to be passed as an operand. Any object other than Integer/String/Buffer simply returns a string containing the object type. This extends the usefulness of the Printf macros. Previously, Concatenate would abort the control method if a non-data object was encountered. ACPICA source code: Deployed the C "const" keyword across the source code where appropriate. ACPICA BZ 732. Joerg Sonnenberger (NetBSD). Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 137.1K Code, 51.5K Data, 188.6K Total Debug Version: 201.0K Code, 82.0K Data, 283.0K Total Previous Release: Non-Debug Version: 136.2K Code, 51.5K Data, 187.7K Total Debug Version: 200.4K Code, 82.0K Data, 282.4K Total 2) iASL Compiler/Disassembler and Tools: iASL/Disassembler: Improved the heuristic used to determine the number of arguments for an externally defined control method (a method in another table). Although this is an improvement, there is no deterministic way to "guess" the number of method arguments. Only the ACPI 6.0 External opcode will completely solve this problem as it is deployed (automatically) in newer BIOS code. iASL/Disassembler: Fixed an ordering issue for emitted External() ASL statements that could cause errors when the disassembled file is compiled. ACPICA BZ 1243. David Box. iASL: Fixed a regression caused by the merger of the two versions of the local strtoul64. Because of a dependency on a global variable, strtoul64 could return an error for integers greater than a 32-bit value. ACPICA BZ 1260. iASL: Fixed a regression where a fault could occur for an ASL Return statement if it invokes a control method that is not resolved. ACPICA BZ 1264. AcpiXtract: Improved input file validation: detection of binary files and non-acpidump text files. ---------------------------------------- 12 February 2016. Summary of changes for version 20160212: 1) ACPICA kernel-resident subsystem: Implemented full support for the ACPI 6.1 specification (released in January). This version of the specification is available at: http://www.uefi.org/specifications Only a relatively small number of changes were required in ACPICA to support ACPI 6.1, in these areas: - New predefined names - New _HID values - A new subtable for HEST - A few other header changes for new values Ensure \_SB_._INI is executed before any _REG methods are executed. There appears to be existing BIOS code that relies on this behavior. Lv Zheng. Reverted a change made in version 20151218 which enabled method invocations to be targets of various ASL operators (SuperName and Target grammar elements). While the new behavior is supported by the ACPI specification, other AML interpreters do not support this behavior and never will. The ACPI specification will be updated for ACPI 6.2 to remove this support. Therefore, the change was reverted to the original ACPICA behavior. ACPICA now supports the GCC 6 compiler. Current Release: (Note: build changes increased sizes) Non-Debug Version: 136.2K Code, 51.5K Data, 187.7K Total Debug Version: 200.4K Code, 82.0K Data, 282.4K Total Previous Release: Non-Debug Version: 102.7K Code, 28.4K Data, 131.1K Total Debug Version: 200.4K Code, 81.9K Data, 282.3K Total 2) iASL Compiler/Disassembler and Tools: Completed full support for the ACPI 6.0 External() AML opcode. The compiler emits an external AML opcode for each ASL External statement. This opcode is used by the disassembler to assist with the disassembly of external control methods by specifying the required number of arguments for the method. AML interpreters do not use this opcode. To ensure that interpreters do not even see the opcode, a block of one or more external opcodes is surrounded by an "If(0)" construct. As this feature becomes commonly deployed in BIOS code, the ability of disassemblers to correctly disassemble AML code will be greatly improved. David Box. iASL: Implemented support for an optional cross-reference output file. The -lx option will create a the cross-reference file with the suffix "xrf". Three different types of cross-reference are created in this file: - List of object references made from within each control method - Invocation (caller) list for each user-defined control method - List of references to each non-method object in the namespace iASL: Method invocations as ASL Target operands are now disallowed and flagged as errors in preparation for ACPI 6.2 (see the description of the problem above).

/******************************************************************************
 *
 * Module Name: evgpeinit - System GPE initialization and update
 *
 *****************************************************************************/

/*
 * Copyright (C) 2000 - 2016, Intel Corp.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions, and the following disclaimer,
 *    without modification.
 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
 *    substantially similar to the "NO WARRANTY" disclaimer below
 *    ("Disclaimer") and any redistribution must be conditioned upon
 *    including a substantially similar Disclaimer requirement for further
 *    binary redistribution.
 * 3. Neither the names of the above-listed copyright holders nor the names
 *    of any contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * Alternatively, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") version 2 as published by the Free
 * Software Foundation.
 *
 * NO WARRANTY
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 */

#include "acpi.h"
#include "accommon.h"
#include "acevents.h"
#include "acnamesp.h"

#define _COMPONENT          ACPI_EVENTS
        ACPI_MODULE_NAME    ("evgpeinit")

#if (!ACPI_REDUCED_HARDWARE) /* Entire module */

/*
 * Note: History of _PRW support in ACPICA
 *
 * Originally (2000 - 2010), the GPE initialization code performed a walk of
 * the entire namespace to execute the _PRW methods and detect all GPEs
 * capable of waking the system.
 *
 * As of 10/2010, the _PRW method execution has been removed since it is
 * actually unnecessary. The host OS must in fact execute all _PRW methods
 * in order to identify the device/power-resource dependencies. We now put
 * the onus on the host OS to identify the wake GPEs as part of this process
 * and to inform ACPICA of these GPEs via the AcpiSetupGpeForWake interface. This
 * not only reduces the complexity of the ACPICA initialization code, but in
 * some cases (on systems with very large namespaces) it should reduce the
 * kernel boot time as well.
 */

/*******************************************************************************
 *
 * FUNCTION:    AcpiEvGpeInitialize
 *
 * PARAMETERS:  None
 *
 * RETURN:      Status
 *
 * DESCRIPTION: Initialize the GPE data structures and the FADT GPE 0/1 blocks
 *
 ******************************************************************************/

ACPI_STATUS
AcpiEvGpeInitialize (
    void)
{
    UINT32                  RegisterCount0 = 0;
    UINT32                  RegisterCount1 = 0;
    UINT32                  GpeNumberMax = 0;
    ACPI_STATUS             Status;


    ACPI_FUNCTION_TRACE (EvGpeInitialize);


    ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT,
        "Initializing General Purpose Events (GPEs):\n"));

    Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
    if (ACPI_FAILURE (Status))
    {
        return_ACPI_STATUS (Status);
    }

    /*
     * Initialize the GPE Block(s) defined in the FADT
     *
     * Why the GPE register block lengths are divided by 2:  From the ACPI
     * Spec, section "General-Purpose Event Registers", we have:
     *
     * "Each register block contains two registers of equal length
     *  GPEx_STS and GPEx_EN (where x is 0 or 1). The length of the
     *  GPE0_STS and GPE0_EN registers is equal to half the GPE0_LEN
     *  The length of the GPE1_STS and GPE1_EN registers is equal to
     *  half the GPE1_LEN. If a generic register block is not supported
     *  then its respective block pointer and block length values in the
     *  FADT table contain zeros. The GPE0_LEN and GPE1_LEN do not need
     *  to be the same size."
     */

    /*
     * Determine the maximum GPE number for this machine.
     *
     * Note: both GPE0 and GPE1 are optional, and either can exist without
     * the other.
     *
     * If EITHER the register length OR the block address are zero, then that
     * particular block is not supported.
     */
    if (AcpiGbl_FADT.Gpe0BlockLength &&
        AcpiGbl_FADT.XGpe0Block.Address)
    {
        /* GPE block 0 exists (has both length and address > 0) */

        RegisterCount0 = (UINT16) (AcpiGbl_FADT.Gpe0BlockLength / 2);
        GpeNumberMax = (RegisterCount0 * ACPI_GPE_REGISTER_WIDTH) - 1;

        /* Install GPE Block 0 */

        Status = AcpiEvCreateGpeBlock (AcpiGbl_FadtGpeDevice,
            AcpiGbl_FADT.XGpe0Block.Address,
            AcpiGbl_FADT.XGpe0Block.SpaceId,
            RegisterCount0, 0,
            AcpiGbl_FADT.SciInterrupt, &AcpiGbl_GpeFadtBlocks[0]);

        if (ACPI_FAILURE (Status))
        {
            ACPI_EXCEPTION ((AE_INFO, Status,
                "Could not create GPE Block 0"));
        }
    }

    if (AcpiGbl_FADT.Gpe1BlockLength &&
        AcpiGbl_FADT.XGpe1Block.Address)
    {
        /* GPE block 1 exists (has both length and address > 0) */

        RegisterCount1 = (UINT16) (AcpiGbl_FADT.Gpe1BlockLength / 2);

        /* Check for GPE0/GPE1 overlap (if both banks exist) */

        if ((RegisterCount0) &&
            (GpeNumberMax >= AcpiGbl_FADT.Gpe1Base))
        {
            ACPI_ERROR ((AE_INFO,
                "GPE0 block (GPE 0 to %u) overlaps the GPE1 block "
                "(GPE %u to %u) - Ignoring GPE1",
                GpeNumberMax, AcpiGbl_FADT.Gpe1Base,
                AcpiGbl_FADT.Gpe1Base +
                ((RegisterCount1 * ACPI_GPE_REGISTER_WIDTH) - 1)));

            /* Ignore GPE1 block by setting the register count to zero */

            RegisterCount1 = 0;
        }
        else
        {
            /* Install GPE Block 1 */

            Status = AcpiEvCreateGpeBlock (AcpiGbl_FadtGpeDevice,
                AcpiGbl_FADT.XGpe1Block.Address,
                AcpiGbl_FADT.XGpe1Block.SpaceId,
                RegisterCount1,
                AcpiGbl_FADT.Gpe1Base,
                AcpiGbl_FADT.SciInterrupt, &AcpiGbl_GpeFadtBlocks[1]);

            if (ACPI_FAILURE (Status))
            {
                ACPI_EXCEPTION ((AE_INFO, Status,
                    "Could not create GPE Block 1"));
            }

            /*
             * GPE0 and GPE1 do not have to be contiguous in the GPE number
             * space. However, GPE0 always starts at GPE number zero.
             */
            GpeNumberMax = AcpiGbl_FADT.Gpe1Base +
                ((RegisterCount1 * ACPI_GPE_REGISTER_WIDTH) - 1);
        }
    }

    /* Exit if there are no GPE registers */

    if ((RegisterCount0 + RegisterCount1) == 0)
    {
        /* GPEs are not required by ACPI, this is OK */

        ACPI_DEBUG_PRINT ((ACPI_DB_INIT,
            "There are no GPE blocks defined in the FADT\n"));
        Status = AE_OK;
        goto Cleanup;
    }


Cleanup:
    (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
    return_ACPI_STATUS (AE_OK);
}


/*******************************************************************************
 *
 * FUNCTION:    AcpiEvUpdateGpes
 *
 * PARAMETERS:  TableOwnerId        - ID of the newly-loaded ACPI table
 *
 * RETURN:      None
 *
 * DESCRIPTION: Check for new GPE methods (_Lxx/_Exx) made available as a
 *              result of a Load() or LoadTable() operation. If new GPE
 *              methods have been installed, register the new methods.
 *
 ******************************************************************************/

void
AcpiEvUpdateGpes (
    ACPI_OWNER_ID           TableOwnerId)
{
    ACPI_GPE_XRUPT_INFO     *GpeXruptInfo;
    ACPI_GPE_BLOCK_INFO     *GpeBlock;
    ACPI_GPE_WALK_INFO      WalkInfo;
    ACPI_STATUS             Status = AE_OK;


    /*
     * Find any _Lxx/_Exx GPE methods that have just been loaded.
     *
     * Any GPEs that correspond to new _Lxx/_Exx methods are immediately
     * enabled.
     *
     * Examine the namespace underneath each GpeDevice within the
     * GpeBlock lists.
     */
    Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS);
    if (ACPI_FAILURE (Status))
    {
        return;
    }

    WalkInfo.Count = 0;
    WalkInfo.OwnerId = TableOwnerId;
    WalkInfo.ExecuteByOwnerId = TRUE;

    /* Walk the interrupt level descriptor list */

    GpeXruptInfo = AcpiGbl_GpeXruptListHead;
    while (GpeXruptInfo)
    {
        /* Walk all Gpe Blocks attached to this interrupt level */

        GpeBlock = GpeXruptInfo->GpeBlockListHead;
        while (GpeBlock)
        {
            WalkInfo.GpeBlock = GpeBlock;
            WalkInfo.GpeDevice = GpeBlock->Node;

            Status = AcpiNsWalkNamespace (ACPI_TYPE_METHOD,
                WalkInfo.GpeDevice, ACPI_UINT32_MAX,
                ACPI_NS_WALK_NO_UNLOCK, AcpiEvMatchGpeMethod,
                NULL, &WalkInfo, NULL);
            if (ACPI_FAILURE (Status))
            {
                ACPI_EXCEPTION ((AE_INFO, Status,
                    "While decoding _Lxx/_Exx methods"));
            }

            GpeBlock = GpeBlock->Next;
        }

        GpeXruptInfo = GpeXruptInfo->Next;
    }

    if (WalkInfo.Count)
    {
        ACPI_INFO (("Enabled %u new GPEs", WalkInfo.Count));
    }

    (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS);
    return;
}


/*******************************************************************************
 *
 * FUNCTION:    AcpiEvMatchGpeMethod
 *
 * PARAMETERS:  Callback from WalkNamespace
 *
 * RETURN:      Status
 *
 * DESCRIPTION: Called from AcpiWalkNamespace. Expects each object to be a
 *              control method under the _GPE portion of the namespace.
 *              Extract the name and GPE type from the object, saving this
 *              information for quick lookup during GPE dispatch. Allows a
 *              per-OwnerId evaluation if ExecuteByOwnerId is TRUE in the
 *              WalkInfo parameter block.
 *
 *              The name of each GPE control method is of the form:
 *              "_Lxx" or "_Exx", where:
 *                  L      - means that the GPE is level triggered
 *                  E      - means that the GPE is edge triggered
 *                  xx     - is the GPE number [in HEX]
 *
 * If WalkInfo->ExecuteByOwnerId is TRUE, we only execute examine GPE methods
 * with that owner.
 *
 ******************************************************************************/

ACPI_STATUS
AcpiEvMatchGpeMethod (
    ACPI_HANDLE             ObjHandle,
    UINT32                  Level,
    void                    *Context,
    void                    **ReturnValue)
{
    ACPI_NAMESPACE_NODE     *MethodNode = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, ObjHandle);
    ACPI_GPE_WALK_INFO      *WalkInfo = ACPI_CAST_PTR (ACPI_GPE_WALK_INFO, Context);
    ACPI_GPE_EVENT_INFO     *GpeEventInfo;
    UINT32                  GpeNumber;
    char                    Name[ACPI_NAME_SIZE + 1];
    UINT8                   Type;


    ACPI_FUNCTION_TRACE (EvMatchGpeMethod);


    /* Check if requested OwnerId matches this OwnerId */

    if ((WalkInfo->ExecuteByOwnerId) &&
        (MethodNode->OwnerId != WalkInfo->OwnerId))
    {
        return_ACPI_STATUS (AE_OK);
    }

    /*
     * Match and decode the _Lxx and _Exx GPE method names
     *
     * 1) Extract the method name and null terminate it
     */
    ACPI_MOVE_32_TO_32 (Name, &MethodNode->Name.Integer);
    Name[ACPI_NAME_SIZE] = 0;

    /* 2) Name must begin with an underscore */

    if (Name[0] != '_')
    {
        return_ACPI_STATUS (AE_OK); /* Ignore this method */
    }

    /*
     * 3) Edge/Level determination is based on the 2nd character
     *    of the method name
     */
    switch (Name[1])
    {
    case 'L':

        Type = ACPI_GPE_LEVEL_TRIGGERED;
        break;

    case 'E':

        Type = ACPI_GPE_EDGE_TRIGGERED;
        break;

    default:

        /* Unknown method type, just ignore it */

        ACPI_DEBUG_PRINT ((ACPI_DB_LOAD,
            "Ignoring unknown GPE method type: %s "
            "(name not of form _Lxx or _Exx)", Name));
        return_ACPI_STATUS (AE_OK);
    }

    /* 4) The last two characters of the name are the hex GPE Number */

    GpeNumber = strtoul (&Name[2], NULL, 16);
    if (GpeNumber == ACPI_UINT32_MAX)
    {
        /* Conversion failed; invalid method, just ignore it */

        ACPI_DEBUG_PRINT ((ACPI_DB_LOAD,
            "Could not extract GPE number from name: %s "
            "(name is not of form _Lxx or _Exx)", Name));
        return_ACPI_STATUS (AE_OK);
    }

    /* Ensure that we have a valid GPE number for this GPE block */

    GpeEventInfo = AcpiEvLowGetGpeInfo (GpeNumber, WalkInfo->GpeBlock);
    if (!GpeEventInfo)
    {
        /*
         * This GpeNumber is not valid for this GPE block, just ignore it.
         * However, it may be valid for a different GPE block, since GPE0
         * and GPE1 methods both appear under \_GPE.
         */
        return_ACPI_STATUS (AE_OK);
    }

    if ((ACPI_GPE_DISPATCH_TYPE (GpeEventInfo->Flags) ==
            ACPI_GPE_DISPATCH_HANDLER) ||
        (ACPI_GPE_DISPATCH_TYPE (GpeEventInfo->Flags) ==
            ACPI_GPE_DISPATCH_RAW_HANDLER))
    {
        /* If there is already a handler, ignore this GPE method */

        return_ACPI_STATUS (AE_OK);
    }

    if (ACPI_GPE_DISPATCH_TYPE (GpeEventInfo->Flags) ==
        ACPI_GPE_DISPATCH_METHOD)
    {
        /*
         * If there is already a method, ignore this method. But check
         * for a type mismatch (if both the _Lxx AND _Exx exist)
         */
        if (Type != (GpeEventInfo->Flags & ACPI_GPE_XRUPT_TYPE_MASK))
        {
            ACPI_ERROR ((AE_INFO,
                "For GPE 0x%.2X, found both _L%2.2X and _E%2.2X methods",
                GpeNumber, GpeNumber, GpeNumber));
        }
        return_ACPI_STATUS (AE_OK);
    }

    /* Disable the GPE in case it's been enabled already. */

    (void) AcpiHwLowSetGpe (GpeEventInfo, ACPI_GPE_DISABLE);

    /*
     * Add the GPE information from above to the GpeEventInfo block for
     * use during dispatch of this GPE.
     */
    GpeEventInfo->Flags &= ~(ACPI_GPE_DISPATCH_MASK);
    GpeEventInfo->Flags |= (UINT8) (Type | ACPI_GPE_DISPATCH_METHOD);
    GpeEventInfo->Dispatch.MethodNode = MethodNode;

    ACPI_DEBUG_PRINT ((ACPI_DB_LOAD,
        "Registered GPE method %s as GPE number 0x%.2X\n",
        Name, GpeNumber));
    return_ACPI_STATUS (AE_OK);
}

#endif /* !ACPI_REDUCED_HARDWARE */